Managing and Mining Graph Data Managing and Mining Graph Data
نویسندگان
چکیده
Graph mining and management has become an important topic of research recently because of numerous applications to a wide variety of data mining problems in computational biology, chemical data analysis, drug discovery and communication networking. Traditional data mining and management algorithms such as clustering, classification, frequent pattern mining and indexing have now been extended to the graph scenario. This book contains a number of chapters which are carefully chosen in order to discuss the broad research issues in graph management and mining. In addition, a number of important applications of graph mining are also covered in the book. The purpose of this chapter is to provide an overview of the different kinds of graph processing and mining techniques, and the coverage of these topics in this book.
منابع مشابه
Chapter 19 TRENDS IN CHEMICAL GRAPH DATA MINING
Mining chemical compounds in silico has drawn increasing attention from both academia and pharmaceutical industry due to its effectiveness in aiding the drug discovery process. Since graphs are the natural representation for chemical compounds, most of the mining algorithms focus on mining chemical graphs. Chemical graph mining approaches have many applications in the drug discovery process tha...
متن کاملGraph Data Management and Mining: A Survey of Algorithms and Applications
Graph mining and management has become a popular area of research in recent years because of its numerous applications in a wide variety of practical fields, including computational biology, software bug localization and computer networking. Different applications result in graphs of different sizes and complexities. Correspondingly, the applications have different requirements for the underlyi...
متن کاملAn Introduction to Graph Data
Graph mining and management has become an important topic of research recently because of numerous applications to a wide variety of data mining problems in computational biology, chemical data analysis, drug discovery and communication networking. Traditional data mining and management algorithms such as clustering, classification, frequent pattern mining and indexing have now been extended to...
متن کاملManaging Massive Graphs
Many real graphs conform today some of the largest data sets. Some of the best representatives of these graphs are the web graph, the interconnection network graph, the telephone call-graph, social networks, and query log graphs. Managing and finding relevant information on large graphs are challenging problems in current research. The need to deal with massive graphs has increased the interest...
متن کاملAutomatic Discovery of Technology Networks for Industrial-Scale R&D IT Projects via Data Mining
Industrial-Scale R&D IT Projects depend on many sub-technologies which need to be understood and have their risks analysed before the project can begin for their success. When planning such an industrial-scale project, the list of technologies and the associations of these technologies with each other is often complex and form a network. Discovery of this network of technologies is time consumi...
متن کامل